Technical Comments

AIAA 82-4081

Comment on "Model-Following System with Assignable Error Dynamics and its Application to Aircraft"

J.R. Broussard*

Information & Control Systems, Inc., Hampton, Va. and

L.E. Mabius†

The Analytic Sciences Corporation, Reading, Mass.

AWAHATA considers in Ref. 1 the model following problem: given a completely controllable and observable linear time-invariant plant,

$$\begin{bmatrix} \dot{x} \\ y \end{bmatrix} = \begin{bmatrix} F & G \\ H & D \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \tag{1}$$

and model,

$$\begin{bmatrix} \dot{x}_m \\ y_m \end{bmatrix} = \begin{bmatrix} F_m & G_m \\ H_m & D_m \end{bmatrix} \begin{bmatrix} x_m \\ u_m \end{bmatrix}$$
 (2)

find the control u which causes y to track y_m for an unspecified u_m . The number of outputs, y, (an $l \times 1$ vector) is assumed to equal the number of controls, u, (an $m \times 1$ vector). Kawahata required that D and D_m in Eqs. (1) and (2) be zero and restricted the control u to have the following form

$$u = K_x x + K_{xm} x_m + K_{um} u_m \tag{3}$$

Additional constraints are imposed in Ref. 1 to generate a solution to the model following problem. K_x , in Eq. (2), assigns some of the closed-loop eigenvalues of the plant to the finite transmission zeroes of the plant, the finite transmission zeroes of the plant must be stable, a special matrix B^* (B^* is defined in Eq. 21 of Ref. 1) must be invertible and $\sigma_k \leq \sigma_{mk}$ for k=1,2,...l (σ_k and σ_{mk} are defined in Eqs. 5a and 6 of Ref. 1). In Kawahata's conclusion, it is indicated that a more general form of Eq. (3) will be investigated in future work where special compensators and derivatives of u_m will be included in Eq. (3).

The purpose of this correspondence is to point out that recently a more general solution to the model following problem has been solved in Refs. 2 and 3. We will briefly show that the model following result in Ref. 1 is a special case of the more general solution. In Ref. 2 it is not required that D and D_m be zero. The more general class of controllers allowed in Ref. 2 includes compensators and derivatives of u_m if they are needed. If simple state feedback is used as the regulation mechanism in the tracking control system it is not required that K_x assign some of the closed-loop eigenvalues to the finite transmission zeroes of the plant. It is possible to do so if desired, however. It is not required in Ref. 2 that the plant

transmission zeroes be stable, provided the unstable transmission zeroes are common to the plant and model (Ref. 4). No relationship is required between σ_k and σ_{mk} , however, derivatives of u_m may become necessary in the tracking control law if $\sigma_k > \sigma_{mk}$. The solution in Ref. 2 is straightforward and is given in state space form. The solution discussed in Ref. 2 and more extensively detailed in Ref. 3 shows that regulation and tracking are two distinct problems and can be solved separately if desired. A summary of the results in Refs. 2 and 3 follows.

Perfect tracking of y_m by y occurs along the trajectories x^* and u^* which satisfy the following equation:

$$\begin{bmatrix} x^* \\ u^* \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} x_m \\ u_m \end{bmatrix} + \begin{bmatrix} \Omega_{11} \\ \Omega_{21} \end{bmatrix} \nu \quad (4)$$

$$\Omega_{11}\dot{\mathbf{v}} = \mathbf{v} - S_{12}\dot{\mathbf{u}}_m \tag{5}$$

The feedforward matrices, S_{11} , S_{12} , S_{21} , and S_{22} satisfy Eq. (9) in Ref. 2, an algebraic equation. A solution to Eq. (9) in Ref. 2 requires that no transmission zero of the plant equal an eigenvalue of the model (see also Ref. 5). Kawahata does not discuss this requirement because the feedback gain in Ref. 1 performs a pole-transmission zero cancellation *before* solving the model-following problem. The other matrices in Eqs. (4) and (5), Ω_{11} and Ω_{21} , satisfy Eq. (14) in Ref. 2.

and (5), Ω_{II} and Ω_{2I} , satisfy Eq. (14) in Ref. 2. The x^* and u^* trajectories, by construction, satisfy the plant dynamics. If the error quantities, $\tilde{x} = (x - x^*)$, and $\tilde{u} = (u - u^*)$, are formed, as discussed in Ref. 3, they satisfy the equation

$$\vec{x} = F\vec{x} + G\vec{u} \tag{6}$$

i.e., the plant dynamics. At this point, any control law employing some form of state feedback to stabilize the tracking error can be designed for \tilde{u} that a designer wishes. The particular type of feedback used in the model following control law derived by Kawahata is not explicitly discussed in Refs. 2 and 3 since the objective of Ref. 2 is to solve the model following problem. Model following and feedback control are distinct problems. Feedback control changes \tilde{x} but does not alter x^* .

In order to obtain the control law form chosen by Kawahata [Eq. (3)], simple state feedback is combined with the model following solution

$$\tilde{\mathbf{u}} = K_{\mathbf{v}}\tilde{\mathbf{x}} \tag{7}$$

$$\dot{\tilde{x}} = (F + GK_x)\tilde{x} \tag{8}$$

Substituting Eq. (4) into Eq. (7) and combining terms produces

$$u = K_x x + (S_{21} - K_x S_{11}) x_m + (S_{22} - K_x S_{12}) u_m + (\Omega_{21} - K_x \Omega_{11}) \nu$$
(9)

 K_x in Eq. (9) can be chosen to place closed-loop eigenvalues of the plant to any desired set of symmetric stable eigenvalues. A linear quadratic regulator (LQR) can be used to obtain K_x , if desired, by weighting \tilde{x} and \tilde{u} in the LQR cost function (Ref. 3). Perfect tracking occurs asymptotically (i.e., $\tilde{x} \to 0$) if the plant and model initial conditions are arbitrary.

Received Jan. 22, 1981; revision received May 8, 1981. Copyright © American Institute of Aeronautics and Astronautics, Inc., 1981. All rights reserved.

^{*}Engineer. Member AJAA.
†Member of the Technical Staff.

Table 1 Inverse and feedforward matrix solutions

					
	1.0	0.0	0.0	0.0	0.0
$S_{II} =$	-0.119	0.297	-1.37×10^{-8}	0.812	0.0
	0.00263	0.00444	0.388	0.0217	-8.31×10^{-8}
	-0.00221	-0.00931	0.0	1.02	0.0
	13.4	-23.5	-3.75×10^{-7}	3.82	0.0128
$S_{12}=0$					
$S_{2l} = $	0.00126	-0.00371	-0.103	-0.0112	0.0
	0.481	-0.283	-39.5	-3.19	1.72×10^{-4}
$S_{22} = $	0.0186	1.062×10^{-5}].	/	
	3.52×10 ⁻⁹	0.319		•	
$\Omega_{II} = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	0.0	0.0	0.0	0.0	0.0
	0.0	-0.7924712	0.0	42.476485	0.0
	0.0	0.0	0.0	1.0	0.0
	0.0	-0.0147849	0.0	0.7924712	0.0
	340.13605	-21.552343	0.0	1155.2063	0.0
$\Omega_{2I} = \left[\right.$	0.0	0.00883	-0.128	-0.685	0.0
	8.50	-0.539	0.0	28.9	0.025

It can be shown, using results from Ref. 6, that Kawahata eliminates the last term in Eq. (9) by choosing some elements in K_x so that

$$(\Omega_{2l} - K_x \Omega_{1l}) \nu = 0 \tag{10}$$

The minimal realization of the generalized state space compensator in Eq. (5) (the dynamical equation is also sometimes referred to as a descriptor system) cancels transmission zeroes of the plant not common between the plant and model. If some of the elements in K_x can be chosen to satisfy Eq. (10), then some of the closed-loop eigenvalues of the plant equal all of the *finite* plant transmission zeroes as discussed by Kawahata. Plant transmission zero locations do not always satisfy desirable handling qualities specifications.

Reworking the example in Ref. 1 using Eqs. (4) and (9) where the plant is a Beechcraft Model 65 and the model to be followed is that of a Boeing 747 yields the results in Table 1. Using Table 1, and K_x from Table 2 in Ref. 1, the values for $S_{21} - K_x S_{11}$ and $S_{22} - K_x S_{12}$ are in agreement with K_{xm} and K_{um} in Table 2 of Ref. 1 to three significant digits. Note that S_{12} is the null matrix, causing the minimal realization of ν to be $\nu = 0$. The last term in Eq. (9) is zero for any value of K_x , a feature of this example that is also pointed out by Kawahata.

References

¹Kawahata, N., "Model-Following System with Assignable Error Dynamics and Its Application to Aircraft," *Journal of Guidance and Control*, Vol. 3, Nov.-Dec. 1980, pp. 508-516.

²Broussard, J.R. and O'Brien, M.J., "Feedforward Control to Track the Output of a Forced Model," *IEEE Transactions on Automatic Control*, Vol. AC-25, Aug. 1980, pp. 851-854.

³O'Brien, M.J. and Broussard, J.R., "Feedforward Control to Track the Output of a Forced Model," *Proceedings of the 17th IEEE Conference on Decision and Control*, San Diego, Calif., Jan. 1979, pp. 1149-1155 (a longer version of Ref. 2).

⁴Wolovich, W.A., Antsaklis, P., and Elliott, H., "On the Stability of Solutions to Minimal and Nonminimal Design Problems," *IEEE Transactions on Automatic Control*, Vol. AC-22, Feb. 1977, pp. 88-94.

⁵Davison, E.J., "The Steady-State Invertibility and Feedforward Control of Linear Time-Invariant Systems," *IEEE Transactions on Automatic Control*, Vol. AC-21, Aug. 1976, pp. 529-534.

⁶ Mabius, L.E. and Kalnitsky, K.C., "Model Reference Adaptive Control Theory for Power Plant Control Applications," The Analytic Sciences Corporation, Rept. No. TR-1489-1, June 1980.

AIAA 82-4082

Reply by Author to J.R. Broussard and L.E. Mabius

N. Kawahata*
National Aerospace Laboratory, Tokyo, Japan

WISH to thank Mr. Broussard and Mr. Mabius for their Comment on my work 1 and for drawing attention to their Ref. 2. When my manuscript was prepared, Ref. 2 was not yet available. Even so, the two papers complement each other.

In Ref. 1, a practically oriented design technique was stressed rather than a more theoretically oriented approach to the model following system. The appearance of time

Received May 14, 1981. Copyright © American Institute of Aeronautics and Astronautics, Inc., 1981. All rights reserved.

^{*}Senior Research Scientist. Member AIAA.